Step of Proof: inconsistent-bool-eq2
11,40
postcript
pdf
Inference at
*
1
I
of proof for Lemma
inconsistent-bool-eq2
:
1. ff = tt
False
latex
by (Unfolds ``btrue bfalse bool`` ( -1)
)
CollapseTHEN ((ApFunToHypEquands `Z' case
Z
C
of inl(
x
) => 0
Co
| inr(
x
) => 1
(-1))
CollapseTHEN (Auto
)
)
latex
C
1
:
C1:
1. (inr
) = (inl
)
C1:
2. case inr
of inl(
x
) => 0 | inr(
x
) => 1 = case inl
of inl(
x
) => 0 | inr(
x
) => 1
C1:
False
C
.
Definitions
case
b
of inl(
x
) =>
s
(
x
) | inr(
y
) =>
t
(
y
)
,
#$n
,
,
,
ff
,
tt
,
left
+
right
,
Unit
,
False
,
Void
Lemmas
unit
wf
origin